

FICHE DE DECLARATION ENVIRONNEMENTALE ET SANITAIRE DU PRODUIT

Robinets de cuisine par Hansgrohe Group

en conformité avec la norme NF EN 15804+A1 et son complément national NF EN 15804/CN

et contrôlée par un vérificateur habilité par l'INIES

Octobre 2022

INIES Numéro d'enregistrement: 20221031249

Réalisée par: brands & values GmbH Altenwall 14 28195 Bremen Allemagne www.brandsandvalues.com

Avertissement

Les informations contenues dans cette déclaration sont fournies sous la responsabilité de Hansgrohe Group (producteur de la DEP) selon la NF EN 15804+A1 et le complément national NF EN 15804/CN.

Toute exploitation, totale ou partielle, des informations fournies dans ce document doit au minimum être accompagnée de la référence complète à la DEP d'origine ainsi qu'à son producteur qui pourra remettre un exemplaire complet.

La norme NF EN 15804+A1 du CEN sert de règle de définition des catégories de produits (RCP).

NOTE 1 La traduction littérale en français de EPD (Environmental Product Declaration) est DEP (Déclaration Environnementale de Produit). Toutefois, en France, on utilise couramment le terme de FDES (Fiche de Déclaration Environnementale et Sanitaire) qui regroupe à la fois la Déclaration Environnementale et des informations Sanitaires pour le produit faisant l'objet de cette FDES. La FDES est donc bien une "DEP" complétée par des informations sanitaires.

Guide de lecture

L'affichage des données d'inventaire respecte les exigences de la norme NF EN 15804+A1. Dans les tableaux suivants 2,53E-06 doit être lu : 2,53 x 10⁻⁶ (écriture scientifique).

Précaution d'utilisation de la DEP pour la comparaison des produits

Les DEP de produits de construction peuvent ne pas être comparables si elles ne sont pas conformes à la norme NF EN 15804+A1.

La norme NF EN 15804+A1 définit au § 5,3 Comparabilité des DEP pour les produits de construction, les conditions nécessaires pour comparer les produits de construction, sur la base des informations fournies par la DEP :

« Une comparaison de la performance environnementale des produits de construction en utilisant les informations des DEP doit être basée sur l'usage des produits et leurs impacts sur le bâtiment et doit prendre en compte la totalité du cycle de vie (tous les modules d'informations). »

Information générale

La présente déclaration est une déclaration individuelle pour une gamme de produits similaires, couvrant le cycle de vie du produit « du berceau à la tombe ». Elle est basée sur un cadre de validité défini conformément à l'arrêté du 23 décembre 2013 relatif à la déclaration environnementale des produits de construction et de décoration destinés à un usage dans les ouvrages de bâtiment, appliqué à la gamme de produits couverte par cette FDES.

1. Noms et adresses des fabricants :

Hansgrohe Group

Site Web: www.hansgrohe-group.com

Auestraße 5 – 9

Email: info@hansgrohe-group.com

77761 Schiltach, Allemagne Téléphone: +49 7836 51-0

2. Le(s) site(s), le fabricant ou le groupe de fabricants ou leurs représentants pour lesquels la DEP est représentative :

Assemblage, fabrication de plastique, galvanisation Assemblage, production de base de laiton, de plastique, revêtement PVD galvanisation du laiton, revêtement PVD

de plastique, revêtement PVD Sites à Offenburg :

Kreuzwegstraße 41 Site Schiltach Ouest D-77656 Offenburg et Vor Heubach 1

Carl-Zeiss-Straße 3 D-77761 Schiltach, Allemagne

D-77656 Offenburg, Allemagne

Assemblage, revêtement PVD Assemblage, production de base du laiton, galvanisation du laiton. Site de Shanghai 2999 Shengang Rd East New Area Songjiang **Industrial Zone**

Site Alpharetta 1490 Bluegrass Lakes Pkwy Alpharetta, GA 30004, États-Unis

3. CPR utilisé: NF EN 15804+A1 et son supplément national NF EN 15804/CN

4. Type de FDES : « du berceau à la tombe »

5. Type de DEP: individuelle

Shanghai, 201611, Chine

6. Le nom du vérificateur si la fiche est vérifiée :

Dr-Ing. Naeem Adibi T:+33 6 45403877

WeLOOP S.A.R.L. Email: n.adibi@weloop.org

254 rue du Bourg F-59130 Lambersart France

www.weloop.org

7. Le nom du programme :

FDFS INIFS HQE Association. 4, avenue du Recteur Poincaré F-75016 Paris France www.base-inies.fr

8. Démonstration de la vérification

Les normes NF EN 15804 :20)12+A1 :2014, NI	F EN 15804/CN :2016 et NF EN 16485 :2014 servent de RCP
Vérification indépendante d	e la déclaration	et des données, conformément à l'EN ISO 14025:2010
	\square interne	
Vérificateur tierce parte:		
Naeem ADIBI (n.adibi@weld	op.org)	

9. La date de publication: 25/10/2022

10. La date de fin de validité: 25/10/2027

11. La référence commerciale/identification du produit par son nom

Le FDES est représentatif de la gamme des robinets de cuisine Hansgrohe et couvre la gamme de la masse des différents produits de 1,52 kg à 5,75 kg.

Tout d'abord, les produits contenant de l'eau se distinguent par leur débit. Cela est dû à l'histoire de l'évolution des débits élevés vers des débits de plus en plus faibles. Aujourd'hui, le groupe Hansgrohe a fixé des objectifs clairs sur la manière de réduire les débits de l'ensemble du portefeuille de produits au cours des prochaines années, car la phase d'utilisation est un levier majeur vers des produits plus durables. La variabilité des résultats s'explique principalement par les différents débits des produits. Ceux-ci varient entre 4,6 et 16 I/min.

D'autre part, il existe de nombreuses exigences de conception de la part des clients qui doivent être prises en compte et qui ont une influence, par exemple, sur la taille, la forme ou les matériaux des produits. La variabilité de la composition matérielle est indiquée à la « description des principaux composants et/ou

matériaux du produit ». Tous les produits, quels que soient leurs matériaux, sont testés selon les mêmes normes de qualité, qui dépassent généralement les exigences normatives.

Néanmoins, seuls les produits qui remplissent la même fonction sont regroupés dans les catégories de produits sélectionnées. Cela s'applique également du point de vue du client, afin que le regroupement soit aussi compréhensible que possible.

Les références commerciales couvertes par cette FDES sont :

Numéro d'article	Désignation du produit	Numéro d'article	Désignation du produit	Numéro d'article	Désignation du produit
4508000	HG Metris kitchen mixer 280 USA	32841000	HG Talis M52 kitchen mixer 170	73880000	HG Focus M41 kitchen mixer 240
10821001	AX Starck kitchen mixer USA	32842000	HG Talis M52 kitchen mixer 170	73885000	HG Focus M41 kitchen mixer 160
13814000	HG MyCube kitchen mixer S	32851000	HG Talis M52 kitchen mixer 170	73886000	HG Focus M41 kitchen mixer 160
13815000	HG MyCube kitchen mixer M	34822001	AX Citterio kitchen mixer USA	71280000	HG Logis M31 kitchen mixer 220
13816000	HG MyCube kitchen mixer L	39835001	AX Citterio kitchen mixer USA	4076000	HG Allegro E kitchen mixer 220 USA
13860000	HG MySport kitchen mixer S	39835007	AX Citterio kitchen mixer CN	4215000	HG Talis C kitchen mixer 240 USA
13861000	HG MySport kitchen mixer M	39840001	AX Citterio kitchen mixer USA	4247000	HG Talis S kitchen mixer 290 USA
13862000	HG MySport kitchen mixer L	39860007	AX Citterio Select kitchen mixer CN	4286000	HG Talis S 2 kitchen mixer 200 USA
14802000	HG Cento kitchen mixer L	39861007	AX Citterio Select kitchen mixer CN	4287000	HG Talis S kitchen mixer 320 USA
14803000	HG Cento kitchen mixer XL	71800000	HG Focus M42 kitchen mixer 220	4310001	HG Talis S 2 kitchen mixer 230 USA
14806000	HG Cento kitchen mixer XXL	71800007	HG Focus M42 kitchen mixer 220 CN	4505000	HG Focus kitchen mixer 230 USA
14806007	HG Cento kitchen mixer XXL CN	71801000	HG Focus M42 kitchen mixer 180	4506001	HG Focus kitchen mixer 200 USA
14815000	HG Ecos kitchen mixer M	71802000	HG Focus M42 kitchen mixer 220	4507001	HG Focus kitchen mixer 270 USA
14816000	HG Ecos kitchen mixer L	71805000	HG Focus M42 kitchen mixer 120	4558000	HG Cento kitchen mixer XXL USA
14820000	HG Metris M71 kitchen mixer 320	71807000	HG Focus M42 kitchen mixer 120	4571005	HG Cento kitchen mixer XL USA
14820001	HG Metris kitchen mixer 320 USA	71812000	HG Focus M43 kitchen mixer 220	4700005	HG Logis kitchen mixer 190 USA
14821000	HG Metris M71 kitchen mixer 320	71814000	HG Focus M42 kitchen mixer 150	4705005	HG Cento kitchen mixer XL USA
14845007	HG Metris Select M71 kitchen mixer 200 CN	71816000	HG Focus M43 kitchen mixer 120	4710005	HG Talis kitchen mixer 180 USA
14870000	HG Talis M52 kitchen mixer 270	71818000	HG Focus M43 kitchen mixer 100	6462000	HG Talis S kitchen mixer 170 USA
14875000	HG Talis M52 kitchen mixer 270	71830000	HG Logis M31 kitchen mixer 120	14853000	HG Talis M52 kitchen mixer 260
14884000	HG Metris Sel M71 kitchen mixer 320	71831000	HG Logis M31 kitchen mixer 120	14872000	HG Talis M52 kitchen mixer 260
31780000	HG Focus M41 kitchen mixer 160	71832000	HG Logis M31 kitchen mixer 160	14872001	HG Talis S 2 kitchen mixer 260 USA
31784000	HG Focus M41 kitchen mixer 160	71833000	HG Logis M31 kitchen mixer 160	14872007	HG Talis M52 kitchen mixer 260 CN
31803000	HG Focus M41 kitchen mixer 200	71835000	HG Logis M31 kitchen mixer 260	14877000	HG Talis M52 kitchen mixer 220
31804000	HG Focus M41 kitchen mixer 160	71835003	HG Logis M31 kitchen mixer 260 AUS	14877001	HG Talis S 2 kitchen mixer 220 USA
31806000	HG Focus M41 kitchen mixer 160	71836000	HG Logis M31 kitchen mixer wall-mounted Lowspout	14877007	HG Talis M52 kitchen mixer 220 CN
31806003	HG Focus M41 kitchen mixer 160 AUS	71837000	HG Logis M31 kitchen mixer 120	31813000	HG Focus M41 kitchen mixer 240
31806019	HG Focus M41 kitchen mixer 160 SGP	71839000	HG Logis M31 kitchen mixer 160	71800001	HG Focus N kitchen mixer 220 USA
31806223	HG Decor kitchen mixer 160 RSA	71842000	HG Focus M43 kitchen mixer 150	10821000	AX Starck kitchen mixer 270
31815000	HG Focus M41 kitchen mixer 240	72800000	HG Talis M54 kitchen mixer 210	14836000	HG Ecos kitchen mixer L

31815004	HG Focus M41 kitchen mixer 240 JP	72800001	HG Talis N kitchen mixer 210 USA	14843000	HG Cento kitchen mixer XXL
31815007	HG Focus M41 kitchen mixer 240 CN	72802000	HG Talis M54 kitchen mixer 210	14888000	HG Metris M71 kitchen mixer 320
31815019	HG Focus M41 kitchen mixer 240 SGP	72804000	HG Talis M54 kitchen mixer 220	14904000	HG kitchen mixer 160
31815223	HG Decor kitchen mixer 240 RSA	72806000	HG Talis M54 kitchen mixer 220	14905000	HG kitchen mixer 260
31816000	HG Focus M41 kitchen mixer 160	72808000	HG Talis M54 kitchen mixer 270	31801000	HG Ecos kitchen mixer L DZR
31817000	HG Focus M41 kitchen mixer 280	72809000	HG Talis M54 kitchen mixer 270	31834000	HG Focus M41 kitchen mixer 260 DZR
31820000	HG Focus M41 kitchen mixer 260	72810000	HG Talis M51 kitchen mixer 260	31838000	HG Ecos kitchen mixer L DZR
31820007	HG Focus kitchen mixer 260 CN	72813000	HG Talis M51 kitchen mixer 200	31842000	HG Focus M41 kitchen mixer 200 DZR
31820019	HG Focus kitchen mixer 260 SGP	72813001	HG Talis S kitchen mixer 200 USA	31846000	HG Focus M41 kitchen mixer 240 DZR
31820223	HG Decor kitchen mixer 260 RSA	72815000	HG Talis M51 kitchen mixer 160	32846000	HG Talis M52 kitchen mixer 270 DZR
31821000	HG Focus M41 kitchen mixer 260	72820000	HG Talis Select M51 kitchen mixer 300	39840000	AX Citterio kitchen mixer 230
31822000	HG Focus M41 kitchen mixer 260	72823001	HG Talis Select S kitchen mixer 300 USA	71859000	HG Logis M31 kitchen mixer 230 DZR
31823000	HG Focus M41 kitchen mixer 260	72840000	HG Talis M54 kitchen mixer 270 738990		HG Metris M71 kitchen mixer 320 DZR
31825000	HG Focus M41 kitchen mixer wall-mounted Lowspout	72846001	HG Talis N kitchen mixer 180 USA		
31831000	HG Focus M41 kitchen mixer 260	73820001	HG Metris Select kitchen mixer 320 USA		

Description de l'unité fonctionnelle et du produit

1. Description de l'unité fonctionnelle

Les résultats de cette FDES sont valides pour l'unité fonctionnelle suivante :

Assurer la fonction d'une (1) unité moyenne de robinet de cuisine permettant la distribution d'eau sanitaire avec une régulation du débit et de la température, utilisée conformément aux recommandations du fabricant pour une durée de vie de 10 ans, en suivant les instructions d'utilisation du fabricant. Un robinet de cuisine conditionné en moyenne est considéré comme le flux de référence.

Nom	Valeur	Unité
Unité déclarée	1	pce.
Facteur de conversion en 1 kg	0,409	-
Unité déclarée avec emballage	2,45	kg
Emballage	0,48	kg
Gamme de poids des produits examinés	1,52 à 5,75	kg

2. Description du produit

Les robinets de cuisine se composent essentiellement d'un boîtier métallique, le plus souvent en laiton, d'une vanne en plastique avec des disques en céramique et de plusieurs pièces d'assemblage en matériaux divers. La surface du robinet est généralement chromée au moyen de diverses étapes de processus galvaniques. Le débit des robinets varie entre 4,6 et 16 l/min.

3. Description de l'usage du produit (domaines d'application)

Les robinets de cuisine sont des appareils qui mélangent l'eau chaude et l'eau froide, coupent l'eau et régulent la quantité d'eau. Ils sont actionnés mécaniquement par des poignées et sont utilisés pour laver la vaisselle, laver les légumes et les fruits, remplir les pots d'eau et se laver les mains dans les cuisines.

4. Description de l'installation du produit

Le raccord est vissé à l'évier ou au comptoir de la cuisine (outils : clé ou tournevis). Les flexibles d'alimentation sont raccordés à la vanne d'angle. La poignée est retirée pour ajuster le réglage de la température de la cartouche et pour régler la protection anti-brûlure (outils : tournevis hexagonal décalé et pince). La poignée est ensuite remise en place (outil : tournevis à tête hexagonale).

5. Autres caractéristiques techniques non incluses dans l'unité fonctionnelle

Les normes suivantes, en fonction du mécanisme de fonctionnement, peuvent s'appliquer aux robinets et aux rugueux pour prouver la sécurité du produit :

- EN 816:2017 : Robinetterie sanitaire Robinets à fermeture automatique PN 10 [EN 816].
- EN 817:2008 : Robinetterie sanitaire Robinets mélangeurs mécaniques (PN 10) [EN 817].
- EN 200:2008 : Robinetterie sanitaire Robinets simples et robinets combinés pour systèmes d'alimentation en eau de type 1 et de type 2 [EN 200].
- ISO 3822 : Acoustique Essais en laboratoire relatifs aux émissions sonores des appareils et équipements utilisés dans les installations d'alimentation en eau [ISO 3822].

6. Description des principaux composants et/ou matériaux du produit

Cette FDES couvre un groupe de produits similaires, dont le produit avec la masse moyenne du group est déclaré. Ce produit est composé de :

Matériel	Quantité (kg)	Déviation	Part des matériaux secondaires
Laiton	1,08	±15%	31%
Zinc	0,410	±9%	0%
Carton, papier (emballage)	0,46	±3%	89% (carton), 25% (papier)
Polyéthylène	0,14	±2,5%	0%
Autres plastiques	0,099	±1,3%	0%
Polyphénylènesulfides	0,08	±2,5%	0%
Plomb	0,099	±5%	0%
Acier inoxydable	0,045	±0,7%	67-77 %
Autres matériaux	0,027	±0,3%	0%
Acier	0,004	±1%	18-100%
TOTAL	2,45		

7. Préciser si le produit contient des substances de la liste candidate selon le règlement REACH (si supérieur à 0.1 % en masse)

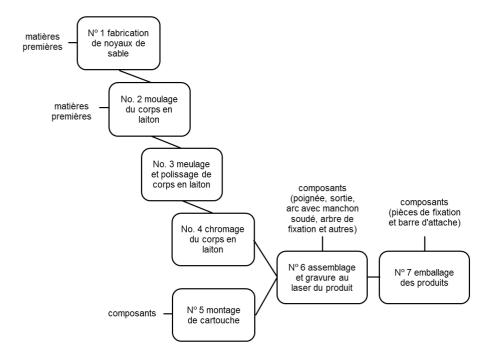
Ce produit contient des substances figurant sur la liste candidate (date : 17.12.2021) dépassant 0,1 % en masse : Le plomb (numéro CAS 7439-92-1), en tant que composant de l'alliage de laiton, figure sur la liste candidate du règlement REACH (règlement (CE) n° 1907/2006) depuis le 27.06.2018. Néanmoins, tous les robinets de cuisine disposent d'un certificat de conformité sanitaire (ACS), qui confirme que les robinets de cuisine sont adaptés au contact avec l'eau destinée à la consommation humaine.

8. Description de la durée de vie de référence (si applicable et conformément aux 7.2.2 de la NF EN 15804+A1)

Paramètre	Valeur
Durée de vie de référence	10 ans
Propriétés déclarées du produit (à la sortie de l'usine) et finitions, etc.	Le produit a passé les contrôles de qualité internes
Paramètres théoriques d'application (s'ils sont imposés par le fabricant), y compris les références aux pratiques appropriées	Installation, selon la norme NF DTU 60.1 (Plomberie sanitaire des bâtiments)
Qualité présumée des travaux, lorsque l'installation est conforme aux instructions du fabricant	Mise en œuvre selon les instructions du fabricant.
Environnement extérieur (pour les applications en extérieur), par exemple intempéries, polluants, exposition aux UV et au vent, orientation du bâtiment, ombrage, température	Non pertinent
Environnement intérieur (pour les applications en intérieur), par exemple température, humidité, exposition à des produits chimiques	L'utilisation du produit est supposée être conforme aux recommandations du fabricant.
Conditions d'utilisation, par exemple fréquence d'utilisation, exposition mécanique	Utilisation standard
Maintenance, par exemple fréquence exigée, type et qualité et remplacement des composants remplaçables	Nettoyage à l'eau savonneuse une fois par semaine, changement de la cartouche une fois dans le cycle de vie

Etapes du cycle de vie

Etape	Etape de production processus		Etape du processus de construction			Etape d'utilisation				E	tape de	fin de vi	ie	à des		
A1Approvisionnement matière première ^b	A2 Transport ^b	A3 Fabrication ^b	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	BS Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	D Bénéfices et charges au-delà des frontières du système
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MNR	Х	MNR	MNR	MNR	Х	Х	Х	Х	Х	Х	Х


X : module déclaré; MNR : module pas pertinente (« module not relevant »)

Etape de production, A1-A3

Les étapes A1 à A3 comprennent tous les processus depuis l'extraction des matières premières jusqu'à leur transformation en usine. Y inclus sont aussi le transport des composants depuis le fournisseur jusqu'au site de production ainsi que la production des entrants auxiliaires ou de pré-produits, fabrication de produits et des coproduits, le transport interne et la fabrication des emballages des matières premières et du produit fini. Les sites de production en Allemagne et en Chine utilisent de l'électricité verte. Néanmoins, le mix électrique chinois a été modélisé pour la Chine, car aucun certificat d'origine n'était disponible. Le site de production aux Etats-Unis utilise de l'électricité conventionnelle et le mix électrique américain a été utilisé dans le modèle.

Les principaux processus sur le site de production sont :

- Le noyau de sable pour le corps de base est fabriqué.
- Le corps du robinet est coulé en laiton à l'aide du noyau de sable.
- Après le moulage, le corps en laiton est rectifié et poli.
- Pour protéger le produit et le rendre durable, le corps est galvanisé au chrome.
- Pendant ce temps, les différentes parties de la cartouche sont assemblées.
- Les pièces du produit (corps en laiton chromé, cartouche, arc de sortie chromé avec manchon soudé, poignée chromée et autres) sont assemblées.
- Le produit préassemblé est emballé avec les autres composants (comme les pièces de fixation).

Etape de construction, A4-A5

Transport jusqu'au chantier, A4

Paramètre	Valeur
Type de combustible et consommation du véhicule ou type de véhicule utilisé pour le transport, par exemple camion sur longue distance, bateau, etc.	Les véhicules considérés sont des camions Euro 0-6 d'un poids brut de 26 tonnes et d'une capacité de charge utile de 17,3 tonnes. Le navire considéré est un porte-conteneurs d'une capacité de charge de 5 000 à 200 000 tpl.
Distance jusqu'au chantier	681 km de distance moyenne par camion pour la distribution des produits sur le marché français. 29 km de distance moyenne par bateau pour la distribution des produits sur le marché français.
Utilisation de la capacité (y compris les retours à vide)	Données génériques de la base de données GaBi.
Masse volumique en vrac des produits transportés	Non calculé
Coefficient d'utilisation de la capacité volumique	55% (le camion pourrait revenir sans sa cargaison)

Installation dans le bâtiment, A5

Sur le chantier, les déchets d'emballage sont générés sous forme de papier, de carton et de plastique.

Les transports sont effectués par camion avec une utilisation de la capacité de 55 %, 150 km jusqu'au centre de tri, puis 30 km jusqu'à la décharge ou 50 km jusqu'à la valorisation énergétique ou le recyclage industriel, selon les données de l'ADEME [ADEME 2020].

Paramètre	Valeur
Intrants auxiliaires pour l'installation (spécifiés par matériau)	Aucune
Utilisation d'eau	Aucune
Utilisation d'autres ressources	Aucune
Description quantitative du type d'énergie (mélange régional) et consommation durant le processus d'installation	0 kWh
Déchets produits sur le site de construction avant le traitement des déchets générés par l'installation du produit (spécifiés par type)	0 kg (préfabrication dans l'usine)
Matières (spécifiées par type) produites par le traitement des déchets sur le site de construction, par exemple collecte en vue du recyclage, de la récupération d'énergie, de l'élimination (spécifiées par voie)	Déchets d'emballage : 0,462 kg d'emballages de carton et papier : • Recyclage (91%) 0,420kg • Enfouissement (9%) 0,042kg 0,019 kg d'emballages de plastiques : • Recyclage (22,8%) 0,004kg • Incinération dans une UIOM avec récupération d'énergie (44,2%) 0,009kg • Enfouissement (32,5%) 0,006kg
Emissions directes dans l'air ambiant, le sol et l'eau	Aucune

Etape de vie en œuvre (exclusion des économies potentielles), B1-B7

Les modules suivants ne sont pas pertinents pour le produit concerné.

- Utilisation/Application (B1)
- Réparations (B3)
- Remplacement (B4)
- Renouvellement (B5)

Maintenance, B2

Le scénario d'entretien (B2) comprend le nettoyage hebdomadaire à l'eau savonneuse, le remplacement de la cartouche (une fois sur la durée de vie de référence) et implique les suppositions suivantes:

Paramètre	Valeur/description
Processus de maintenance	Nettoyage hebdomadaire à l'eau savonneuse, remplacement unique de la cartouche pendant la durée de vie de référence.
Cycle de maintenance	Nettoyage à l'eau savonneuse : Une fois par semaine (0,5 litre d'eau avec 1,5% de savon)

	Remplacement de la cartouche : Une fois pendant la durée de vie de référence (0,0581 kg).
Intrants auxiliaires pour la maintenance (par exemple, produit de nettoyage, spécifier les matériaux)	Nettoyage à l'eau savonneuse : Eau : 260 kg Savon : 3,9 kg Remplacement de la cartouche : Composition de la cartouche
Déchets produits pendant la maintenance (spécifier les matériaux)	Nettoyage à l'eau savonneuse : 263,9 kg Eau usée avec du savon Remplacement de la cartouche : 0,0581 kg Cartouche remplacée
Consommation nette d'eau douce pendant la maintenance	0,260 m ³
Intrant énergétique pendant la maintenance (par exemple nettoyage par aspiration), type de vecteur énergétique, par exemple électricité, et quantité, si applicable et pertinent	0 kWh

Utilisation de l'énergie, B6 & Utilisation de l'eau, B7

Utilisation de l'énergie et de l'eau. Deux types de vecteurs énergétiques ont été modélisés et calculés en tant que scénarios distincts dans B6 : chaudière à gaz basse température (20-120 kW) et chauffe-eau électrique instantané (21 kW). En outre, les résultats ont été calculés dans un tableau de résultats séparé, sans les impacts environnementaux pour les besoins en eau et en énergie dans les modules B6 et B7.

Paramètre	Valeur/description
Consommation nette d'eau douce (pendant toute la durée de vie de référence)	25,19 m ³
Type de vecteur énergétique. 50% : Chaudière à gaz basse température 20-120 kW, 50%: Chauffe-eau électrique instantané 21 kW (pendant toute la durée de vie de référence)	1172 kWh
Performance caractéristique	100% d'efficacité énergétique selon l'ensemble des données françaises
Autres hypothèses pour l'élaboration du scénario	2,05 occupants par foyer Durée de vie de référence de 10 ans 20 secondes d'utilisation par personne et par jour Capacité thermique spécifique (1.163*10-3 kWh/kg*K) Différence de température 40°C

Etape de fin de vie, C1-C4

Le scénario de déconstruction est basé sur une déconstruction manuelle. Seuls des outils sont nécessaires pour la démolition ou le démontage des robinets du bassin. Par conséquent, aucun coût n'est comptabilisé dans le module C1.

Les robinets de cuisine sont transportés par le recycleur. Ils sont transportés par camion sur 150 km jusqu'au centre de tri, puis sur 30 km jusqu'à la décharge ou sur 50 km jusqu'à la valorisation énergétique ou le recyclage des matériaux, selon les données de l'ADEME [ADEME 2020].

Le scénario suivant pour le traitement des déchets a été appliqué sur la base de trois références : pour les composants de produits non métalliques [Consultic 2015], pour les composants de produits métalliques [Eurometaux.eu, 2022] et pour les emballages en plastique et en papier [ADEME 2020]. La fin de vie est définie comme suit :

Dans le scénario de fin de vie, les composants non métalliques sont.

- 95% sont traités thermiquement (UIOM) sans récupération d'énergie (C3) et
- 5% sont mis en décharge (C4).

Pour les composants métalliques, il est modélisé que 90 % sont envoyés au recyclage des matériaux, 5 % à l'incinération sans récupération d'énergie (modélisé comme une coupe sans débits ni crédits) et 5 % sont mis en décharge [Eurometaux.eu, 2022].

On suppose que

- 90% sont envoyés au recyclage des matériaux
- 5% sont traités thermiquement (UIOM) sans récupération d'énergie (C3)
- 5% sont mis en décharge (C4).

Paramètre	Valeur/description
Processus de collecte spécifié par type	1,967 kg collectés individuellement 0 kg collectés avec les déchets de construction mélangés
Système de récupération spécifié par type	0 kg pour la réutilisation 1,479 kg pour le recyclage comme matériau secondaire (via la plateforme de triage) 0 kg pour la valorisation énergétique comme combustible secondaire (via la plateforme de triage)
Elimination spécifiée par type	0,389 kg de produit pour traitement thermique (UIOM) avec récupération d'énergie 0,098 kg de produit mis en décharge

Potentiel de recyclage / réutilisation / récupération, D

L'énergie générée par la récupération d'énergie ainsi que les matériaux recyclés sont affectées au module D en tant que potentiels possibles ou charges évitées dans les systèmes ultérieurs. Les crédits ne sont accordés que pour la partie primaire des intrants. Les charges provenant de l'énergie nécessaire à la fusion de la ferraille ont été soustraites des crédits accordés pour les métaux primaires, si aucun ensemble de données spéciales n'était disponible pour la valeur de la ferraille. Tous les processus de récupération d'énergie ont au moins un niveau d'efficacité de R1=60 %.

Le module D présente les coûts et les avantages du cycle de vie résultant du traitement des matériaux recyclés, de la fin de la vie des déchets à la substitution (en tant que coûts) et de la substitution des ressources primaires (en tant qu'avantages).

Les ensembles de données suivants de GaBi 10.6 ont été sélectionnés pour quantifier l'effet de substitution.

Pour l'énergie exportée :

- pour la chaleur exportée :
 - FR: Thermal energy from natural gas; technology mix regarding firing and flue gas cleaning; production mix, at heat plant; 100% efficiency (en)
- pour l'électricité exportée :
 - FR: Electricity grid mix; AC, technology mix; consumption mix, to consumer; <1kV (en)

Pour la substitution des matières premières :

- GLO: Special high grade zinc
- GLO: Copper mix (99,999% from electrolysis)
- DE: Lead (99,995%)
- GLO: market for tin
- EU-28: Stainless steel product (304) value of scrap
- GLO: Value of scrap worldsteel (Steel scrap)

GLO: market for silverDE: Lead (99,995%)

DE: Zink Gusslegierungen (GD ZnAl4Cu1)DE: Copper mix (99,999% from electrolysis)

Information pour le calcul de l'analyse du cycle de vie

Frontières du système	Les limites du système respectent les limites imposées par la norme NF EN 15804+A1 et son complément national NF EN 15804/CN.
	Pour les détails, voir section "Etapes du cycle de vie".
	Selon les indications du fabricant, aucun coproduit ne résulte de la production de la robinetterie.
	Aucun procédé a été modélisé qui aurait rendu nécessaire une affection de procédés multi-intrants.
Allocations	La réutilisation, le recyclage et la récupération énergétique ont été modélisés selon les règles de la NF EN 15804. C'est à dire que les procédés multifonctionnels de la réutilisation, du recyclage et de la récupération énergétique n'ont pas été affectés à plusieurs systèmes de produit, mais, le principe du "cut-off" a été appliqué. Les limites du system sont – dans ce cas – définis par le statut de fin de déchet
	L'étiquette sensorielle, les fibres de bois, de coton et de papier vulcanisé représentent une part de 0,044 % de la masse totale des entrées/sorties dans le module A1-A3 et ne sont pas pris en compte dans cette EPD.
Critère de coupture	Du côté du fabricant, aucune donnée spécifique au groupe de produits n'était disponible sur certains des matériaux d'exploitation et auxiliaires utilisés (notamment les filtres, les feutres de polissage, l'huile de machine, le charbon actif) et sur la composition de certains déchets. Ce substances ne représentent jamais plus de 0,1% de la masse totale des entrées/sorties du module A1-A3.
	Dans cette approche, les entrées et sorties ayant une contribution < 1% des flux de matières et d'énergie par étape ont été considérées. A l'exception des aspects mentionnés ci-dessus, aucun flux de matière ou d'énergie n'a été exclu de la modélisation, pour lesquels les responsables du projet auraient su qu'une contribution significative pouvait être attendue sur les indicateurs de cette ACV. De plus, il faut considérer que la somme des processus exclus ne dépasse pas 5% des catégories d'impact.
Représentativité géographique et représentativitétemporelle des données primaires	Les données de production représentent >85% de la production de Hansgrohe dans ses usines allemandes, chinoises et américaines de l'année 2021. Les produits revêtus de PVD sont exclus. Les données génériques sont issues de la version 43, 2021.2 de GaBi. Logiciel utilisé Logiciel GaBi version 10.6.
Carbone biogénique	Le carbone biogène a été ajusté manuellement, sur la base des emballages moyens en papier et carton et des facteurs de l'Institut Thünen, publiés dans le document de travail 38 de Thünen [Thünen, 2014]. Cela a donné 0,66 kg de dioxyde de carbone, ce qui équivaut à 0,18 kg de carbone biogène, pour le robinet de cuisine moyen.

AXOR

731 675 robinets de cuisine de 133 types de produits différents ont été produits. Pour l'évaluation de la variabilité des résultats, tous les produits ont été équilibrés et comparés au produit moyen pondéré par le volume de production.

Les différents types de produits ont tous la même fonction et diffèrent principalement en termes de design, ce qui a une influence sur la construction et les matériaux utilisés. La structure de base des types de produits est toujours similaire. Les proportions de types et de quantités de matériaux ne diffèrent pas beaucoup, comme le montre également le tableau de composition moyenne des matériaux.

La déviation du GWP dans les modules A1-C4 varie entre un minimum de -53% et un maximum de 47%. 99,5% des robinets de cuisine ont un écart inférieur à 40% et se situent entre -53% et 27%.

L'écart de la PENRT dans les modules A1-C4 est compris entre un minimum de -55% et un maximum de 48%. 99,5 % des robinets de cuisine ont un écart inférieur à 40 % et compris entre -55 % et 28 %.

La déviation de la NHWD dans les modules A1-C4 est comprise entre un minimum de -52% et un maximum de 49%. 99,5 % des robinets de cuisine ont une variabilité inférieure à 40 % et comprise entre -52 % et 27 %.

0,5% de tous les produits fabriqués, respectivement 0,8% de tous les types de produits, qui dépassent le seuil >40% avec des écarts plus élevés dans au moins une des catégories d'impact, correspondent tous au robinet de cuisine ayant le débit d'eau le plus élevé avec un débit maximal de 16,0 l/min pour une pression de 3 bars.

Tous les autres produits, soit 99,5 % du total des produits fabriqués, dont le débit est inférieur à 16,0 l/min (entre 4,6 et 16,0 l/min) présentent un écart inférieur à 40 %.

Les écarts dans les résultats du cycle de vie sont en grande partie dus aux débits, car ils varient selon le type de produit, et les modules B6 et B7 représentent plus de 90% de l'indicateur GWP. Par conséquent, la phase de production a une influence mineure sur les résultats de l'ACV.

Variabilité des résultats

Résultats de l'analyse du cycle de vie (à l'exclusion des impacts environnementaux pour les besoins en eau et en énergie dans les modules B6 et B7)

	Etape de fabrication	Etape	e de mis œuvre				Etape	de vie	en d'ut	ilisation	١			Etape (de fin de	vie		Total cycle de vie	s du
Impacts environnementaux	Total A1-A3 Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement desdéchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et charges au-delà des frontières du système
Réchauffement climatique kg CO ₂ eq/UF	5,81E+00	1,40E-01	6,84E-01	8,24E-01	0,00E+00	9,07E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,07E+00	0,00E+00	3,27E-02	7,60E-01	4,55E-03	7,97E-01	1,65E+01	-3,77E+00
Appauvrissement de la couche d'ozone kg CFC 11 eq/UF	5,73E-08	3,74E-17	1,36E-16	1,73E-16	0,00E+00	7,25E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,25E-07	0,00E+00	8,79E-18	2,69E-10	1,60E-17	2,69E-10	7,83E-07	-5,44E-08
Acidification des sols et de l'eau kg SO ₂ eq/UF	6,09E-02	1,86E-04	2,84E-05	2,14E-04	0,00E+00	2,58E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,58E-02	0,00E+00	3,97E-05	1,23E-04	1,29E-05	1,76E-04	8,71E-02	-4,08E-02
Eutrophisation kg (PO ₄) ³⁻ eq/UF	6,18E-03	3,89E-05	2,03E-05	5,92E-05	0,00E+00	7,85E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,85E-03	0,00E+00	8,70E-06	2,56E-05	4,52E-06	3,88E-05	1,41E-02	-4,35E-03
Formation d'ozone photochimique Ethene eq/UF	3,05E-03	-2,97E-05	1,04E-05	-1,93E-05	0,00E+00	7,73E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,73E-03	0,00E+00	-7,22E-06	9,74E-06	1,38E-06	3,90E-06	1,08E-02	-2,07E-03
Epuisement des ressources abiotiques (éléments) kg Sb eq/UF	4,57E-03	1,25E-08	2,31E-09	1,48E-08	0,00E+00	1,15E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,15E-05	0,00E+00	2,94E-09	-5,81E-09	3,44E-10	-2,53E-09	4,58E-03	-3,89E-03
Epuisement des ressources abiotiques (fossiles) MJ/UF	8,55E+01	1,88E+00	1,93E-01	2,07E+00	0,00E+00	2,24E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,24E+02	0,00E+00	4,40E-01	2,58E-01	7,12E-02	7,69E-01	3,12E+02	-3,94E+01
Pollution de l'eau m³/UF	2,64E+01	3,21E-02	5,00E-03	3,71E-02	0,00E+00	7,56E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,56E+00	0,00E+00	7,55E-03	1,20E-02	2,83E-03	2,24E-02	3,40E+01	-2,33E+01
Pollution de l'air m3/UF	8,98E+02	3,99E+00	1,37E+01	1,77E+01	0,00E+00	2,81E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,81E+03	0,00E+00	9,15E-01	6,00E+00	6,60E-01	7,58E+00	3,73E+03	-6,09E+02

	Etape de fabrication	Etape	de mis	e en			Etap	e de vi	e en d'ı	ıtilisatio	n			Etap	e de fin	de vie		Total cycle de vie	rges es du
Utilisation des ressources	Total A1-A3 Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et charges au-delà des frontières du système
Utilisation de l'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelables utilisées comme matières premières MJ/UF	1,81E+01	1,09E-01	7,80E+00	7,91E+00	0,00E+00	4,74E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,74E+01	0,00E+00	2,56E-02	1,28E-01	5,34E-03	1,59E-01	7,36E+01	-1,48E+01
Utilisation des ressources d'énergie primaire renouvelables en tant que matières premières MJ/UF	7,76E+00	0,00E+00	-7,76E+00	-7,76E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation totale des ressources d'énergie primaire renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières) MJ/UF	2,59E+01	1,09E-01	4,10E-02	1,50E-01	0,00E+00	4,74E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,74E+01	0,00E+00	2,56E-02	1,28E-01	5,34E-03	1,59E-01	7,36E+01	-1,48E+01
Utilisation de l'énergie primaire non renouvelable, àl'exclusion des ressources d'énergie primaire non renouvelables utilisées comme matières premières MJ/UF	8,54E+01	1,90E+00	1,13E+00	3,03E+00	0,00E+00	2,30E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,30E+02	0,00E+00	4,46E-01	1,17E+01	7,35E-02	1,22E+01	3,31E+02	-4,75E+01
Utilisation des ressources d'énergie primaire non renouvelables en tant que matières premières MJ/UF	1,24E+01	0,00E+00	-8,26E-01	-8,26E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-1,10E+01	0,00E+00	-1,10E+01	5,79E-01	0,00E+00

	Etape de fabrication	_	e de mi œuvre				Etape	de vie	en d'ut	ilisation	ı			Etape	de fin d	de vie		Totalcycle de vie	au-delà tème
Utilisation des ressources (suite)	Total A1-A3Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation del'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et chargesau-delà des frontières du système
Utilisation totale des ressources d'énergie primaire non renouvelables(énergie primaire et ressources d'énergie primaire utilisées comme matières premières) MJ/UF	9,78E+01	1,90E+00	3,00E-01	2,20E+00	0,00E+00	2,30E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,30E+02	0,00E+00	4,46E-01	6,88E-01	7,35E-02	1,21E+00	3,31E+02	-4,75E+01
Utilisation de matière secondaire kg/UF	7,20E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,46E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,46E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,22E-01	1,27E+00
Utilisation de combustibles secondaires renouvelables MJ/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires non renouvelables MJ/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation nette d'eau douce m3/UF	2,15E-01	1,24E-04	1,28E-04	2,52E-04	0,00E+00	8,19E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,19E-02	0,00E+00	2,93E-05	2,02E-03	9,18E-07	2,05E-03	2,99E-01	-1,67E-01

	Etape de fabrication	Etape œuvr	e de mise e	e en			Etape	e de vie	en d'u	tilisatio	n			Etape	de fin d	de vie		Total cycle de vie	ges res
Catégorie de déchets	Total A1-A3 Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et charges au-delà des frontières du système
Déchets dangereux éliminés kg/UF	1,40E-06	9,99E-11	3,13E-11	1,31E-10	0,00E+00	4,25E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,25E-03	0,00E+00	2,35E-11	7,32E-11	1,30E-11	1,10E-10	4,25E-03	-6,93E-06
Déchets non dangereux éliminés kg/UF	1,15E+00	2,98E-04	3,75E-02	3,78E-02	0,00E+00	3,80E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,80E-01	0,00E+00	7,00E-05	2,41E-02	9,82E-02	1,22E-01	1,69E+00	-8,56E-01
Déchets radioactifs éliminés kg/UF	3,75E-03	3,45E-06	4,18E-05	4,53E-05	0,00E+00	2,31E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,31E-03	0,00E+00	8,09E-07	1,68E-04	8,41E-07	1,70E-04	6,27E-03	-2,64E-03

		Etape de fabrication	-	e de 1 œuvr				Etap	e de vi	e en d'ı	utilisatio	on		ı	Etape d	e fin de '	vie		Total cycle de vie	s e
Flux so	ortants	Total A1-A3 Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et chargesau-delà des frontières du système
Composants réutilis kg/	sation	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matériaux o recyo kg/	clage	0,00E+00	0,00E+00	6,23E-02	6,23E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,48E+00	0,00E+00	1,48E+00	1,54E+00	0,00E+00
Matériaux d récupération d		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,01E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,01E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,01E-04	0,00E+00
Energie	Electricité	2,54E-02	0,00E+00	7,41E-02	7,41E-02	0,00E+00	1,58E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,58E-01	0,00E+00	0,00E+00	3,20E-02	3,21E-04	3,23E-02	2,90E-01	0,00E+00
fournie à l'extérieur	Vapeur	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
(par vecteur énergétique) MJ/UF	Gaz et process	5,73E-02	0,00E+00	1,02E-01	1,02E-01	0,00E+00	2,87E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,87E-01	0,00E+00	0,00E+00	6,00E-02	0,00E+00	6,00E-02	5,06E-01	0,00E+00

Résultats de l'analyse du cycle de vie (y compris les impacts environnementaux pour les besoins en eau et en énergie dans les modules B6 et B7)

	Etape de fabrication	Etape	e de mi œuvre				Etape	de vie	en d'ut	ilisation	l			Etape	de fin de	vie		Total cycle de vie	s dn
Impacts environnementaux	Total A1-A3 Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement desdéchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et charges au-delà des frontières d système
Réchauffement climatique kg CO ₂ eq/UF	5,81E+00	1,40E-01	6,84E-01	8,24E-01	0,00E+00	9,07E+00	0,00E+00	0,00E+00	0,00E+00	2,07E+02	9,62E+00	2,25E+02	0,00E+00	3,27E-02	7,60E-01	4,55E-03	7,97E-01	2,33E+02	-3,77E+00
Appauvrissement de la couche d'ozone kg CFC 11 eq/UF	5,73E-08	3,74E-17	1,36E-16	1,73E-16	0,00E+00	7,25E-07	0,00E+00	0,00E+00	0,00E+00	3,71E-12	1,42E-13	7,25E-07	0,00E+00	8,79E-18	2,69E-10	1,60E-17	2,69E-10	7,83E-07	-5,44E-08
Acidification des sols et de l'eau kg SO ₂ eq/UF	6,09E-02	1,86E-04	2,84E-05	2,14E-04	0,00E+00	2,58E-02	0,00E+00	0,00E+00	0,00E+00	1,78E-01	2,32E-02	2,27E-01	0,00E+00	3,97E-05	1,23E-04	1,29E-05	1,76E-04	2,88E-01	-4,08E-02
Eutrophisation kg (PO ₄) ³⁻ eq/UF	6,18E-03	3,89E-05	2,03E-05	5,92E-05	0,00E+00	7,85E-03	0,00E+00	0,00E+00	0,00E+00	3,17E-02	1,19E-01	1,59E-01	0,00E+00	8,70E-06	2,56E-05	4,52E-06	3,88E-05	1,65E-01	-4,35E-03
Formation d'ozone photochimique Ethene eq/UF	3,05E-03	-2,97E-05	1,04E-05	-1,93E-05	0,00E+00	7,73E-03	0,00E+00	0,00E+00	0,00E+00	1,77E-02	3,14E-03	2,85E-02	0,00E+00	-7,22E-06	9,74E-06	1,38E-06	3,90E-06	3,16E-02	-2,07E-03
Epuisement des ressources abiotiques (éléments) kg Sb eq/UF	4,57E-03	1,25E-08	2,31E-09	1,48E-08	0,00E+00	1,15E-05	0,00E+00	0,00E+00	0,00E+00	4,69E-05	8,42E-07	5,92E-05	0,00E+00	2,94E-09	-5,81E-09	3,44E-10	-2,53E-09	4,63E-03	-3,89E-03
Epuisement des ressources abiotiques (fossiles) MJ/UF	8,55E+01	1,88E+00	1,93E-01	2,07E+00	0,00E+00	2,24E+02	0,00E+00	0,00E+00	0,00E+00	3,38E+03	9,41E+01	3,69E+03	0,00E+00	4,40E-01	2,58E-01	7,12E-02	7,69E-01	3,78E+03	-3,94E+01
Pollution de l'eau m³/UF	2,64E+01	3,21E-02	5,00E-03	3,71E-02	0,00E+00	7,56E+00	0,00E+00	0,00E+00	0,00E+00	1,82E+01	3,55E+01	6,13E+01	0,00E+00	7,55E-03	1,20E-02	2,83E-03	2,24E-02	8,78E+01	-2,33E+01
Pollution de l'air m3/UF	8,98E+02	3,99E+00	1,37E+01	1,77E+01	0,00E+00	2,81E+03	0,00E+00	0,00E+00	0,00E+00	6,29E+03	2,81E+03	1,19E+04	0,00E+00	9,15E-01	6,00E+00	6,60E-01	7,58E+00	1,28E+04	-6,09E+02

	Etape de fabrication	Etape œuvre	de mis	e en			Etap	e de vi	e en d'ı	ıtilisatio	n			Etap	e de fin	de vie		Total cycle de vie	rges es du
Utilisation des ressources	Total A1-A3 Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et charges au-delà des frontières du système
Utilisation de l'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelables utilisées comme matières premières MJ/UF	1,81E+01	1,09E-01	7,80E+00	7,91E+00	0,00E+00	4,74E+01	0,00E+00	0,00E+00	0,00E+00	9,55E+02	5,94E+01	1,06E+03	0,00E+00	2,56E-02	1,28E-01	5,34E-03	1,59E-01	1,09E+03	-1,48E+01
Utilisation des ressources d'énergie primaire renouvelables en tant que matières premières MJ/UF	7,76E+00	0,00E+00	-7,76E+00	-7,76E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation totale des ressources d'énergie primaire renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières) MJ/UF	2,59E+01	1,09E-01	4,10E-02	1,50E-01	0,00E+00	4,74E+01	0,00E+00	0,00E+00	0,00E+00	9,55E+02	5,94E+01	1,06E+03	0,00E+00	2,56E-02	1,28E-01	5,34E-03	1,59E-01	1,09E+03	-1,48E+01
Utilisation de l'énergie primaire non renouvelable, àl'exclusion des ressources d'énergie primaire non renouvelables utilisées comme matières premières MJ/UF	8,54E+01	1,90E+00	1,13E+00	3,03E+00	0,00E+00	2,30E+02	0,00E+00	0,00E+00	0,00E+00	7,38E+03	1,67E+02	7,77E+03	0,00E+00	4,46E-01	1,17E+01	7,35E-02	1,22E+01	7,87E+03	-4,75E+01
Utilisation des ressources d'énergie primaire non renouvelables en tant que matières premières MJ/UF	1,24E+01	0,00E+00	-8,26E-01	-8,26E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-1,10E+01	0,00E+00	-1,10E+01	5,79E-01	0,00E+00

	Etape de fabrication	_	e de mi œuvre				Etape	de vie	en d'ut	ilisation	ı			Etape	de fin d	de vie		Totalcycle de vie	gesau-delà système
Utilisation des ressources (suite)	Total A1-A3Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation del'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et chargesau-delà des frontières du système
Utilisation totale des ressources d'énergie primaire non renouvelables(énergie primaire et ressources d'énergie primaire utilisées comme matières premières) MJ/UF	9,78E+01	1,90E+00	3,00E-01	2,20E+00	0,00E+00	2,30E+02	0,00E+00	0,00E+00	0,00E+00	7,38E+03	1,67E+02	7,77E+03	0,00E+00	4,46E-01	6,88E-01	7,35E-02	1,21E+00	7,87E+03	-4,75E+01
Utilisation de matière secondaire kg/UF	7,20E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,46E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,46E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,22E-01	1,27E+00
Utilisation de combustibles secondaires renouvelables MJ/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires non renouvelables MJ/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation nette d'eau douce m3/UF	2,15E-01	1,24E-04	1,28E-04	2,52E-04	0,00E+00	8,19E-02	0,00E+00	0,00E+00	0,00E+00	2,02E+00	1,28E-01	2,23E+00	0,00E+00	2,93E-05	2,02E-03	9,18E-07	2,05E-03	2,44E+00	-1,67E-01

	Etape de fabrication	Etape	e de mise e	e en			Etape	e de vie	en d'u	tilisatio	n			Etape	de fin d	de vie		Total cycle de vie	ges res
Catégorie de déchets	Total A1-A3 Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de		C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et charges au-delà des frontières du système
Déchets dangereux éliminés kg/UF	1,40E-06	9,99E-11	3,13E-11	1,31E-10	0,00E+00	4,25E-03	0,00E+00	0,00E+00	0,00E+00	8,60E-07	4,11E-08	4,25E-03	0,00E+00	2,35E-11	7,32E-11	1,30E-11	1,10E-10	4,25E-03	-6,93E-06
Déchets non dangereux éliminés kg/UF	1,15E+00	2,98E-04	3,75E-02	3,78E-02	0,00E+00	3,80E-01	0,00E+00	0,00E+00	0,00E+00	1,93E+00	2,57E+01	2,80E+01	0,00E+00	7,00E-05	2,41E-02	9,82E-02	1,22E-01	2,93E+01	-8,56E-01
Déchets radioactifs éliminés kg/UF	3,75E-03	3,45E-06	4,18E-05	4,53E-05	0,00E+00	2,31E-03	0,00E+00	0,00E+00	0,00E+00	1,57E+00	2,88E-02	1,61E+00	0,00E+00	8,09E-07	1,68E-04	8,41E-07	1,70E-04	1,61E+00	-2,64E-03

		Etape de fabrication	-	e de nœuvr				Etap	e de vi	e en d'ı	utilisatio	on		E	Etape d	e fin de '	vie		Total cycle de vie	s e
Flux so	rtants	Total A1-A3 Production	A4 Transport	A5 Installation	Total A4-A5	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	Total B1-B7	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Décharge	Total C1-C4	Total A1-C4	D Bénéfices et chargesau-delà des frontières du système
Composants réutilie kg/	sation	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matériaux o recyc kg/	clage	0,00E+00	0,00E+00	6,23E-02	6,23E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,48E+00	0,00E+00	1,48E+00	1,54E+00	0,00E+00
Matériaux d récupération d		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,01E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,01E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,01E-04	0,00E+00
Energie	Electricité	2,54E-02	0,00E+00	7,41E-02	7,41E-02	0,00E+00	1,58E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,58E-01	0,00E+00	0,00E+00	3,20E-02	3,21E-04	3,23E-02	2,90E-01	0,00E+00
fournie à l'extérieur	Vapeur	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
(par vecteur énergétique) MJ/UF	Gaz et process	5,73E-02	0,00E+00	1,02E-01	1,02E-01	0,00E+00	2,87E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,87E-01	0,00E+00	0,00E+00	6,00E-02	0,00E+00	6,00E-02	5,06E-01	0,00E+00

Informations additionnelles sur le relargage de substances dangereuses dans l'air intérieur, le sol et l'eau pendant l'étape d'utilisation

Air intérieur

Produit non concerné

Sol et eau

Relargage dans le sol

Produit non concerné.

Relargage dans l'eau

Le règlement sur l'eau potable détermine la qualité de l'eau potable au point de prélèvement.

Il en résulte des exigences pour les matériaux utilisés dans les installations d'eau potable en général et donc dans les robinetteries sanitaires en particulier.

Tous les matériaux utilisés par Hansgrohe SE, qui sont en contact avec l'eau potable, sont conformes à la réglementation sur l'eau potable.

Réglementation pour les métaux (au niveau européen) :

- Acceptation des matériaux métalliques utilisés pour les produits en contact avec l'eau potable : Approche commune 4MS
- Partie A Procédure d'acceptation
- Partie B Liste de composition commune 4MS
- Recommandation sur les métaux de l'agence fédérale de l'environnement : matériaux métalliques adaptés à l'hygiène de l'eau potable

Réglementation pour les autres matériaux (France) :

- ACS : Attestation de Conformité Sanitaire (plastiques, élastomères, métaux)

Les produits de la société Hansgrohe SE peuvent être utilisés avec de l'eau potable.

Contribution du produit à la qualité de vie à l'intérieur des bâtiments

Caractéristiques du produit participant à la création des conditions de confort hygrothermique dans le bâtiment

Les produits couverts par ce document ne revendiquent aucune performance hygrothermique.

Caractéristiques du produit participant à la création des conditions de confort acoustique dans le bâtiment

Les produits couverts par ce document ne revendiquent aucune performance acoustique.

Caractéristiques du produit participant à la création des conditions de confort visuel dans le bâtiment

La variété des conceptions et des formes proposées permet une adéquation esthétique entre les produits couverts par ce document et leur environnement.

Caractéristiques du produit participant à la création des conditions de confort olfactif dans le bâtiment

Les produits couverts par ce document ne revendiquent aucune performance olfactive.

Références

Arrêté du 15 juillet 2019 modifiant les arrêtés relatifs à la déclaration

environnementale des produits de construction et de décoration et les

équipements électriques, électroniques et de

génie climatique destinés à un usage dans les ouvrages de bâtiment ainsi

qu'à leur vérification, version du 28 juillet 2019

ADEME 2020 ADEME – La valorisation des emballages en France – directive 94/62/CE

modifiée sur les emballages et les déchets d'emballages – base de

données 2018 - Juin 2020 - 72 pages

Consultic Production, transformation et recyclage des matières plastiques en

Allemagne en 2015 (Situation similaire supposée en France) - Septembre

2016

EN 816 EN 816:2017 : Robinetterie sanitaire - Robinets à fermeture automatique

PN 10 [EN 816].

EN 817:2008 : Robinetterie sanitaire - Robinets mélangeurs mécaniques

(PN 10) [EN 817].

EN 200:2008 : Robinetterie sanitaire - Robinets simples et robinets

combinés pour systèmes d'alimentation en eau de type 1 et de type 2 [EN

200].

ISO 3822 ISO 3822 : Acoustique - Essais en laboratoire relatifs aux émissions sonores

des appareils et équipements utilisés dans les installations d'alimentation

en eau [ISO 3822].

Eurometaux www.eurometaux.eu, récupéré le janvier 2022

GaBi GaBi 10.6 and database version 2021.2: Software System and Database for

Life Cycle Engineering, Sphera Solutions GmbH, Leinfelden-Echterdingen,

2021

NF EN 15804/CN NF EN 15804/CN:2016-06, Contribution of construction works to

sustainable development - Environmental product declarations - Rules for construction product categories - National supplement to NF EN

15804+A1

NF EN 15804+A1 NF EN 15804+A1:2014-04, Contribution of construction works to

sustainable development - Environmental product declarations - Rules

for construction product categories

Thünen Diestel, Sylvia / Weimar, Holger: La teneur en carbone dans les produits

en bois et en papier - Déduction et facteurs de conversion. Thünen Working Paper 38, Johann Heinrich von Thünen-Institut. Hambourg,

2014